Generic modules of tame algebras over real closed fields
نویسندگان
چکیده
منابع مشابه
Generic modules over artin algebras
Generic modules have been introduced by Crawley-Boevey in order to provide a better understanding of nite dimensional algebras of tame representation type. In fact he has shown that the generic modules correspond to the one-parameter families of indecomposable nite dimensional modules over a tame algebra 5]. The Second Brauer-Thrall Conjecture provides another reason to study generic modules be...
متن کاملOn minimal disjoint degenerations of modules over tame path algebras
For representations of tame quivers the degenerations are controlled by the dimensions of various homomorphism spaces. Furthermore, there is no proper degeneration to an indecomposable. Therefore, up to common direct summands, any minimal degeneration from M to N is induced by a short exact sequence 0 → U → M → V → 0 with indecomposable ends that add up to N . We study these ’building blocs’ of...
متن کاملKummer subfields of tame division algebras over Henselian valued fields
By generalizing the method used by Tignol and Amitsur in [TA85], we determine necessary and sufficient conditions for an arbitrary tame central division algebra D over a Henselian valued field E to have Kummer subfields [Corollary 2.11 and Corollary 2.12]. We prove also that if D is a tame semiramified division algebra of prime power degree p over E such that p 6= char(Ē) and rk(ΓD/ΓF ) ≥ 3 [re...
متن کاملNoetherian algebras over algebraically closed fields
Let k be an uncountable algebraically closed field and let A be a countably generated left Noetherian k-algebra. Then we show that A⊗k K is left Noetherian for any field extension K of k. We conclude that all subfields of the quotient division algebra of a countably generated left Noetherian domain over k are finitely generated extensions of k. We give examples which show that A⊗k K need not re...
متن کاملAffine Nash groups over real closed fields
We prove that a semialgebraically connected affine Nash group over a real closed field R is Nash isogenous to the semialgebraically connected component of the group H(R) of R-points of some algebraic group H defined over R. In the case when R = R this result was claimed in [5], but a mistake in the proof was recently found, and the new proof we obtained has the advantage of being valid over an ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 2014
ISSN: 0021-8693
DOI: 10.1016/j.jalgebra.2014.07.020